An integrated encyclopedia of DNA elements in the human genome.
The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification.
These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation.
The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation.
Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Description: Can be used for various studies in the realm of gene expression, both normal and pathological. It is an excellent control and suitable for educational purposes.
Studies on transformation of Escherichia coli with plasmids.
Factors that affect the probability of genetic transformation of Escherichia coli by plasmids have been evaluated. A set of conditions is described under which about one in every 400 plasmid molecules produces a transformed cell. These conditions include cell growth in medium containing elevated levels of Mg2+, and incubation of the cells at 0 degrees C in a solution of Mn2+, Ca2+, Rb+ or K+, dimethyl sulfoxide, dithiothreitol, and hexamine cobalt (III). Transformation efficiency declines linearly with increasing plasmid size.
Relaxed and supercoiled plasmids transform with similar probabilities. Non-transforming DNAs compete consistent with mass. No significant variation is observed between competing DNAs of different source, complexity, length or form.
Competition with both transforming and non-transforming plasmids indicates that each cell is capable of taking up many DNAmolecules, and that the establishment of a transformation event is neither helped nor hindered significantly by the presence of multiple plasmids.
Transformation of intact yeast cells treated with alkali cations.
ntact yeast cells treated with alkali cations took up plasmid DNA. Li+, Cs+, Rb+, K+, and Na+ were effective in inducing competence. Conditions for the transformation of Saccharomyces cerevisiae D13-1A with plasmid YRp7 were studied in detail with CsCl.
The optimum incubation time was 1 h, and the optimum cell concentration was 5 x 10(7) cells per ml. The optimum concentration of Cs+ was 1.0 M. Transformation efficiency increased with increasing concentrations of plasmidDNA.
Polyethylene glycol was absolutely required. Heat pulse and various polyamines or basic proteins stimulated the uptake of plasmid DNA. Besides circular DNA, linear plasmid DNA was also taken up by Cs+-treated yeast cells, although the uptake efficiency was considerably reduced.
The transformation efficiency with Cs+ or Li+ was comparable with that of conventional protoplast methods for a plasmid containing ars1, although not for plasmids containing a 2 microns origin replication.
Improved tools for biological sequence comparison.
We have developed three computer programs for comparisons of protein and DNA sequences. They can be used to search sequence data bases, evaluate similarity scores, and identify periodic structures based on local sequence similarity.
The FASTA program is a more sensitive derivative of the FASTP program, which can be used to search protein or DNAsequence data bases and can compare a protein sequence to a DNA sequence data base by translating the DNA data base as it is searched.
FASTA includes an additional step in the calculation of the initial pairwise similarity score that allows multiple regions of similarity to be joined to increase the score of related sequences.
The RDF2 program can be used to evaluate the significance of similarity scores using a shuffling method that preserves local sequence composition. The LFASTA program can display all the regions of local similarity between two sequences with scores greater than a threshold, using the same scoring parameters and a similar alignment algorithm; these local similarities can be displayed as a “graphic matrix” plot or as individual alignments.
In addition, these programs have been generalized to allow comparison of DNA or protein sequences based on a variety of alternative scoring matrices.